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Abstract

Analytical solutions of different nonlinear heat conduction equations are meaningful in heat transfer theory. In addition, they are very useful to
computational heat transfer to verify numerical solutions and to develop numerical schemes, grid generation methods and so forth. However, none
or very few explicit analytical solutions are known for nonlinear (thermal properties are functions of temperature) non-Fourier heat conduction
equations. In this paper, some algebraically explicit analytical solutions of unsteady geometrical 3-D nonlinear non-Fourier heat conduction equa-
tion are derived. Some mathematical tools needed to extract such explicit exact solutions for complicated nonlinear partial differential equations
are also discussed. For example, the little known and rarely used method of separating variables with addition is developed; matching relations
between the functions of the thermal conductivity, of the freepath and of the volumetric specific heat are suggested. The main aim of this paper
is to obtain some possibly explicit analytical solutions of the nonlinear and non-Fourier heat conduction equation as the benchmark solutions of
computational heat transfer but not a specified solution for given initial and boundary conditions, therefore, the initial and boundary conditions
are indeterminate before derivation and deduced from the solutions afterwards.
© 2006 Elsevier SAS. All rights reserved.
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Analytical solutions play a very important role in heat trans-
fer. Many analytical solutions of constant coefficient equations
played a key role in the early development of heat conduction.
However, for variable thermal conductivity, free path and vol-
umetric specific heat, the governing equations of non-Fourier
heat conduction are nonlinear, and therefore it is difficult to find
their analytical solutions. To the authors’ knowledge, very few
or even no explicit analytical solutions of unsteady nonlinear
non-Fourier heat conduction can be found in the open litera-
ture at present. In order to fill some of the gaps in the field of
unsteady nonlinear and non-Fourier heat conduction, it is mean-
ingful to extract some analytical solutions. Therefore, some al-
gebraically explicit analytical solutions of unsteady nonlinear
compressible flow and heat conduction were recently given by
one of the authors [1,2] to develop the theory of aerodynamics
and heat conduction.
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Moreover, besides theoretical meaning, analytical solutions
can also be applied to check the accuracy, convergence and ef-
fectiveness of various numerical computation methods and their
differencing schemes, grid generation ways and so on. The an-
alytical solutions are therefore very useful even for the newly
rapidly developing computational heat conduction. For exam-
ple, in the fluid dynamics field, several analytical solutions that
simulate the 3-D potential flow in turbomachine cascades were
given by one of the authors [3]; these solutions have been used
successfully by independent researchers to verify the accuracy
and exactness of their computational methods [4–6].

Several algebraically explicit analytical solutions of un-
steady nonlinear non-Fourier heat conduction are derived in this
paper, both to develop the theory and to serve as benchmark so-
lutions for numerical calculations.

1. Governing equation and solution method

When the thermal conductivity, free path and volumetric
specific heat are functions of temperature, the governing equa-
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Nomenclature

C1–C11 arbitrary constants
C specific heat . . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

k arbitrary constant
K thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

l free path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
m,n arbitrary constants
t time coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

x, y, z geometric coordinates . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

θ temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
τ thermal relaxation time . . . . . . . . . . . . . . . . . . . . . . . s
tion of unsteady 3-D nonlinear non-Fourier heat conduction can
be expressed as follows
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where ρ, C, θ , τ and K are density, specific heat, temperature,
thermal relaxation time and thermal conductivity; t , x, y and z

are time and geometric coordinates. Volumetric specific heat is
defined as ρC. According to Ref. [7,8],

τ = ρCl2/3K (2)

where l is free path.
It is emphasized that the main aim of this paper is to obtain

some possibly explicit analytical solutions of Eq. (1) but not
a specified solution for given initial and boundary conditions:
therefore, the initial and boundary conditions are indeterminate
before derivation and deduced from the solutions afterwards.
As it will be shown below, this makes the derivation procedure
easier. In order to derive explicit analytical solutions, another
important point is that the function of thermal conductivity, the
function of free path and the function of volumetric specific
heat have to be matchable in some degree. In some cases the
method of separating variables with addition [1,2,9–18] is ap-
plied to solve the equation: in this method, it is assumed that
the unknown solution θ = θ(t, x, y, z) = T (t)+X(x)+Y(y)+
Z(z) replaces θ = (t, x, y, z) = T (t) · X(x) · Y(y) · Z(z) in the
common method of separating variables.

Actually, all solutions given in this paper can be proven eas-
ily by substituting them into the governing equation.

2. Solutions with the method of separating variables with
addition

As mentioned in previous paragraph, the existence of some
relation between the thermal properties is one of the require-
ments to obtain explicit analytical solutions of nonlinear equa-
tions. In our treatment, the following functions of temperature
are assumed:

ρC = menθ (3)

K = kenθ (4)

When n = 0, Eqs. (3) and (4) represent constant ρC and K ,
when n > 0 or < 0, ρC and K increase or decrease with tem-
perature. Commonly the absolute value of n is not high. It is
assumed l = const as well, then the thermal relaxation time τ is
a constant also and equal to ml2/(3k) according to Eqs. (2)–(4).
With such relations and the method of separating variables with
addition, Eq. (1) can be simplified as following

m
[
T ′ + ml2T ′′/(3k)

]
= k

(
X′′ + nX′2 + Y ′′ + nY ′2 + Z′′ + nZ′2) (5)

Eq. (5) can be separated into following equation

T ′ + ml2T ′′/(3k)

= ±C2
1 = k/m

(
X′′ + nX′2 + Y ′′ + nY ′2 + Z′′ + nZ′2) (6)

and then it is deduced from left-hand side of Eq. (6)

T ′′ + 3kT ′/
(
ml2) ∓ 3kC2

1/
(
ml2) = 0 (7)

The right-hand side of Eq. (6) can be separated again as follows

X′′ + nX′2 = C5 = ±mC2
1/k − Y ′′ − nY ′2 − Z′′ − nZ′2 (8)

and

Y ′′ + nY ′2 = C7 = ±mC2
1/k − C5 − Z′′ − nZ′2 (9)

Therefore, we can derive the solution of governing equation
by solving Eq. (7), the left-hand side of Eq. (8) and both sides
of Eq. (9). The final solution is T + X + Y + Z.

The ordinary differential equation (7) is easy to solve, its
solution is

T = ±C2
1 t + C2 exp(−t/τ ) + C4 (10)

For left-hand side of Eq. (8), the solution is different for
different values of n and C5. When they are all positive or neg-
ative, the solution is

X = ln
{[

1 − exp
[
2
√

C5n(C6 − x)
]]2

/ exp
[
2
√

C5n(C6 − x)
]}

/(2n) (11)

Similarly, for left-hand side of Eq. (9), when n and C7 are
all positive or negative, the solution is

Y = ln
{[

1 − exp
[
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√
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for right-hand side of Eq. (9), when n and ±mC2
1/k − C5 − C7

are all positive or negative, the solution is
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1
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Then a solution of Eq. (1) can be expressed by the summa-
tion of Eqs. (10)–(13). The initial and boundary conditions of
this solution can be obtained by substituting some given initial
time and boundary coordinates into the solution. For example,
if t = 0, the initial condition is

θ = C2 + C4 + X + Y + Z (14)

For the solutions discussed in the following paragraphs, the
“decision” about the proper initial and boundary conditions will
be made the same way.

Since τ must be positive, it can be understood from Eq. (10)
that when C1 = 0 and C2 �= 0 the temperature field of this so-
lution will be a decreasing function of time, converging for
t → ∞ to a steady temperature distribution C4 + X + Y + Z.
The transient will be basically completed in a time interval of
the same order of magnitude as the thermal relaxation time.
This is a common law in non-Fourier processes.

When C1 �= 0 and C2 = 0, this solution represents a temper-
ature field with linear temperature increase or decrease.

The solution Eqs. (10)–(13) is a mathematical 4-D solution
that we believe is new, and has its theoretical significance. Fur-
thermore, it may be used as a non-trivial benchmark for com-
putational heat transfer calculations.

Since n cannot be zero in Eqs. (11)–(13), we cannot simply
degenerate them to get a constant thermal property solution.

The constant thermal property solution with ρC = m and
K = k (n = 0) can be deduced similarly, the final expression is
as follows

θ = ±C1t
2 + C2 exp(−t/τ ) + C5x

2/2 + C6x + C7y/2 + C8y

+ (±C2
1m/k − C5 − C7

)
z2/2 + C9z + C4 (15)

The temperature variation with time is the same as Eq. (10),
but the temperature variation with geometric coordinates is par-
abolic.

If n and C5 (as well as C7,mC2
1/k −C5 −C7) have different

sign, the solution of Eq. (7) is the same as previous Eq. (10),
but the solutions of Eqs. (8) and (9) are different, and can be
expressed as follows

X = ln
{
cos

⌊
n
√−C5/n(C6 − x)

⌋}
/n (16)

Y = ln
{
cos

⌊
n
√−C7/n(C8 − y)

⌋}
/n (17)

Z = ln
{
cos

⌊
n

√
∓mC2

1/k + C5 + C7(C9 − z)
⌋}

/n (18)

and the temperature distribution is the sum of Eqs. (16)–(18)
and Eq. (10).

The discussion presented for the previous solutions applies
here as well, and applies to the selection of initial and boundary
conditions, the influence of the value of C1 and C2, the meaning
of the individual solutions, etc.

3. Solutions with ordinary method of separating variables

Applying the ordinary method of separating variables to
the governing equation (1), the matching relations between the
thermal properties would be

ρC = mθn (19)
and

K = kθn (20)

Similar to previous paragraph, if we assumed that free
path l = const, then the thermal relaxation time τ is equal to
ml2/(3k) and a constant also.

Solving Eqs. (19) and (20) by the ordinary method of sep-
aration of variables: θ = T · X · Y · Z, the following ordinary
differential equations can be deduced

T ′′ + 3kT ′/
(
ml2) = ±3kC2

1T/
(
ml2) (21)

X′′ + nX′2/X − C4X = 0 (22)

Y ′′ + nY ′2/Y − C7Y = 0 (23)

Z′′ + nZ′2/Z − (±mC2
1/k − C4 − C7

)
Z = 0 (24)

If a positive sign is chosen in the right-hand side of Eq. (21),
the solution is easily found to be:

T = C2 exp(r1t) + C3 exp(r2t) (25)

where

r1,2 = −1/(2τ) ∓
√

1/τ 2 + 4C2
1/τ/2

When C3 = 0, there is a limit process which approaches a
steady temperature field, and the transient time scale is basically
determined by the thermal relaxation time τ .

If the negative sign is chosen and 4C2
1 < 1/τ or τ <

1/(2C1)
2 the solution is still Eq. (25); but with

r1,2 = −1/(2τ) ∓
√

1/τ 2 − 4C2
1/τ/2

When τ = 1/(2C1)
2, the solution is

T = (C2 + C3t) exp
[−t/(2τ)

]
(26)

When 4C2
1 > 1/τ or τ > 1/(2C1)

2, the solution is

T = exp
[−t/(2τ)

]⌊
C2 cos

(√
4C2

1/τ − 1/τ 2t/2
)

+ C3 sin
(√

4C2
1/τ − 1/τ 2t/2

)⌋
(27)

The Eq. (27) represents a more general phenomenon in non-
Fourier process: the attenuating approach process “carries” a
heat wave.

By the way, the Fourier heat conduction means τ = 0, and
one of the results of this solution is that only when τ is larger
than a certain value, the heat wave exists.

Algebraically explicit analytical solutions of ordinary differ-
ential Eqs. (22)–(24) can only be derived with some special
value of n. Following solutions are given for n = −3/2. Of
course, this absolute value of n seems too high for common
thermal properties. However, the theoretical significance of the
solution is still apparent.

When C4 > 0, the solution of Eq. (22) is

X = C6 sec2⌊√
C4/2(x + C5)

⌋
(28)

When C4 < 0, the solution is

X = ±8C4 exp(±√−2C4x)

/
[
C5 exp(±√−2C4x) + C6

]2 (29)
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Similarly, Eqs. (23) and (24) have the following solutions:

Y = C9 sec2⌊√
C7/2(y + C8)

⌋
(C7 > 0) (30)

or

Y = ±8C7 exp(±√−2C7y)/
[
C8 exp(±√−2C7y) + C9

]2

(C7 < 0) (31)

and

Z = C11 sec2⌊√(±mC2
1/k − C4 − C7

)
/2(z + C10)

⌋
(±mC2

1/k − C4 − C7 > 0
)

(32)

or

Z = ±8
(±mC2

1/k − C4 − C7
)

× exp
[±

√
2
(
C4 + C7 ∓ mC2

1/k
)
z
]

/
{
C10 exp

[±
√

2
(
C4 + C7 ∓ mC2

1/k
)
z
] + C11

}2

(±mC2
1/k − C4 − C7 < 0

)
(33)

If the temperature in Eqs. (3) and (4) and Eqs. (19) and (20)
is absolute temperature and has to be positive, then the product
of T , X, Y and Z must remain positive as well.

In addition, there are some particular solutions originated by
specific values of some constants. For example, when C1 = 0:

T = C2 exp(−t/τ ) + C3 (34)

Which means that the temperature field will tend to a steady
value C3XYZ.

When C4 = 0, or C7 = 0, or ±mC2
1/k = C4 + C7, then

X = [C5x + C6]1/(n+1) (35)

or

Y = [C8y + C9]1/(n+1) (36)

or

Z = [C10z + C11]1/(n+1) (37)

Which means that the temperature distribution along geo-
metric coordinates is an exponential function.

As mentioned before, the final solution is T XYZ. It has to
be emphasized again that both Eqs. (28)–(33) and their final so-
lutions are valid for n = −3/2 only. It does not influence the
theory meaning and the role of benchmark solution of compu-
tational heat transfer.

It has to be remarked that, on the contrary, Eqs. (25)–(27)
and (34)–(37) are valid for any values of n.

4. Conclusions

The non-Fourier heat conduction is a new branch of heat
transfer of interest for many new high technology fields. Some
algebraically explicit analytical solutions are derived for its
nonlinear cases (thermal properties are functions of tempera-
ture) with two methods of separation of valuables and match-
able relation of thermal properties. These results are both the-
oretically important and helpful in computational heat transfer
as benchmark solutions.
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